Communication

Asymmetric Synthesis of 3,4-Dihydrocoumarins by Rhodium-Catalyzed Reaction of 3-(2-Hydroxyphenyl)cyclobutanones

Takanori Matsuda, Masanori Shigeno, and Masahiro Murakami

J. Am. Chem. Soc., 2007, 129 (40), 12086-12087•DOI: 10.1021/ja075141g • Publication Date (Web): 18 September 2007

Downloaded from http://pubs.acs.org on February 14, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 14 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Asymmetric Synthesis of 3,4-Dihydrocoumarins by Rhodium-Catalyzed Reaction of 3-(2-Hydroxyphenyl)cyclobutanones

Takanori Matsuda, Masanori Shigeno, and Masahiro Murakami*
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

Received July 11, 2007; E-mail: murakami@sbchem.kyoto-u.ac.jp

Significant advances have been made over the past decade in the field of activation of carbon-carbon single bonds by means of transition metal catalysis. ${ }^{1}$ Now a variety of catalytic processes are available for organic transformations including cross-coupling and ring-expansion reactions. ${ }^{2}$ We recently developed the rhodiumcatalyzed reaction of boron-substituted cyclobutanones forming 1-indanones. Enantioselectivities up to 95% ee were observed during the sequence of intramolecular addition/ring-opening reactions when stereogenic quaternary carbon centers arose at the benzylic position. ${ }^{3}$ It was also found that rhodium catalysts promote the ring-opening reaction of cyclobutanones with phenols to form ester linkages via inter- ${ }^{-}$and intramolecular pathways. ${ }^{5}$ In this paper, we describe an asymmetric synthesis of 3,4-dihydrocoumarins by way of a highly enantioselective carbon-carbon bond cleavage. ${ }^{6}$ Deuterium-labeling experiments led to the development of a new cascade reaction involving 1,4-rhodium shift and intermolecular conjugate addition.

When 3-(2-hydroxyphenyl)cyclobutanone (1a) ${ }^{7}$ was treated with a catalytic amount of a rhodium(I) catalyst, prepared in situ from $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}(7 \mathrm{~mol} \%)$ and (R)-SEGPHOS ($16 \mathrm{~mol} \%$), in toluene at room temperature for $19 \mathrm{~h}, 4$-methyl-3,4-dihydrocoumarin (2a) was produced in 77% isolated yield (Scheme 1). ${ }^{8}$ Only one enantiomer was observed by chiral HPLC analysis. The absolute configuration was assigned to be S by comparison with the reported optical rotation. ${ }^{9}$ BINAP and Tol-BINAP were also effective as the chiral ligands, both giving 96% ee. We propose a possible mechanism which consists of (i) generation of rhodium aryloxide 3, (ii) addition to the carbonyl group forming rhodium cyclobutanolate 4, ${ }^{10}$ (iii) ring opening of the cyclobutane skeleton by β-carbon elimination ${ }^{11}$ generating 5 , which is the enantiodifferentiating step, and (iv) protonolysis affording the dihydrocoumarin 2a, as we proposed recently. ${ }^{4}$

When the reaction of $\mathbf{1 a}$ was carried out in $\mathrm{THF}-\mathrm{D}_{2} \mathrm{O}(4: 1)$, deuterium was incorporated at the 3-position (88\% D; 61:39 dr) (Scheme 2). This result indicates that protonolysis occurs not directly from the intermediate $\mathbf{5}$ but via enolate $\mathbf{6}$. From intermediate $\mathbf{5}$, in which rhodium is located γ to the carbonyl group, $\mathbf{6}$ is generated via a series of β-hydride elimination and re-additions. ${ }^{12}$ The excellent enantioselectivity observed with $\mathbf{2 a}$ is explained by assuming that rhodium faithfully remains on the same enantioface during the repetitive elimination/re-addition processes.

The results of the $\operatorname{Rh}(\mathrm{I})-(R)$-SEGPHOS-catalyzed reaction of other 3-monosubstituted cyclobutanones $\mathbf{1}$ are shown in Chart 1. Methoxy- and chloro-substituted cyclobutanones gave the corresponding 3,4-dihydrocoumarins, $\mathbf{2 b}$ and $\mathbf{2 c}$, in good yields and high levels of enantiomeric excess. The reaction of naphthalene derivative produced tricyclic lactone 2d in 91% yield and 98% ee.

We also tried to synthesize seven-membered ring lactones by the rhodium-catalyzed reaction of 3-monosubstituted cyclobutanones with their tethers extended by one carbon. The reaction of cyclobutanone 7 possessing a benzylic alcohol moiety required heating at $135^{\circ} \mathrm{C}$, and seven-membered lactone $\mathbf{8}$ was produced in 76% yield and 34% ee (eq 1). Cyclobutanone 9 reacted at $110^{\circ} \mathrm{C}$ to give benzolactone 10 in 61% yield with 28% ee (eq 2). The more compact and less flexible 2-oxabicyclo[3.1.1]heptane

Scheme 1. Rhodium-Catalyzed Reaction of Cyclobutanone 1a

with (R)-SEGPHOS
77% yield, $>99 \%$ ee
with (R)-BINAP 80% yield, 96% ee
with (R)-Tol-BINAP 78% yield, 96% ee

Scheme 2. Deuterium-Labeling Experiment with 1a

Chart 1. Asymmetric Synthesis of 4-Monosubstituted 3,4-Dihydrocoumarins $\mathbf{2 b}$ - \mathbf{d}^{a}

79% yield, 99% ee

2 c
85% yield, 98% ee

2 d
91% yield, 98% ee
a $3.5 \mathrm{~mol} \%$ of $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}$ and $8 \mathrm{~mol} \%$ of (R)-SEGPHOS in toluene for 2b or in toluene-THF (4:1) for 2c and 2d at rt for $12-14 \mathrm{~h}$.
skeleton of 4 is likely preferable for the enantiodifferentiating carbon-carbon bond cleavage step to occur with high selectivity.

61% yield, 28% ee
10.1021/ja075141g CCC: $\$ 37.00$ © 2007 American Chemical Society

Table 1. Asymmetric Synthesis of 4,4-Disubstituted 3,4-Dihydrocoumarins $\mathbf{2 e - j}{ }^{\text {a }}$

 1e-j			$\begin{gathered} 3.5 \mathrm{~mol} \%[\mathrm{Rh}(\mathrm{OH})(\mathrm{Cod})]_{2} \\ 8 \mathrm{~mol} \%(\mathrm{R})-\mathrm{Tol}-\mathrm{BINAP} \end{gathered}$			
	cyclobutanone			dihydrocoumarin		
entry	1	R^{1}	R^{2}	2	\%yield ${ }^{\text {b }}$	\%ee ${ }^{\text {c }}$
1	1e	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	H	2e	81 (79 ${ }^{\text {d }}$	$94\left(80{ }^{\text {d }}\right.$)
2^{e}	1 f	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	OMe	2 f	92	95
$3 f$	1g	Et	H	2 g	80	94
4^{f}	1h	$i-\mathrm{Pr}$	H	2h	87	93
5^{8}	1 i	Ph	H	2 i	68	92
$6^{\text {ef }}$	1j	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$	Me	2 j	77	77

${ }^{a}$ Unless otherwise noted, cyclobutanone $\mathbf{1}$ was reacted in the presence of $3.5 \mathrm{~mol} \%$ of $[\mathrm{Rh}(\mathrm{OH})(\operatorname{cod})]_{2}$ and $8.0 \mathrm{~mol} \%$ of (R)-Tol-BINAP in toluene at room temperature for $11-24 \mathrm{~h} .{ }^{b}$ Isolated yield by preparative TLC. ${ }^{c}$ Determined by chiral HPLC. ${ }^{d}$ Result with (R)-SEGPHOS. ${ }^{e}$ TolueneTHF (4:1) was used. ${ }^{f} 7.0 \mathrm{~mol} \%$ of $[\mathrm{Rh}(\mathrm{OH})(\mathrm{cod})]_{2}$ and $16 \mathrm{~mol} \%$ of (R) -Tol-BINAP were used. ${ }^{g}$ THF was used.

Scheme 3. Deuterium-Labeling Experiment with $1 f$

Table 2. Rhodium-Catalyzed Cascade Reaction of 1 with Electron-Deficient Alkenes 12a

		$\xrightarrow[\mathrm{THF}, 50^{\circ} \mathrm{C}, 10 \mathrm{~h}]{\substack{3.5 \mathrm{~mol} \%[\mathrm{Rh}(\mathrm{OH})(\mathrm{Cod})]_{2} \\ 8 \mathrm{~mol} \%(R)-\mathrm{OH}-\mathrm{BNAP}}}$			
entry	1 ($\left.\mathrm{R}^{1}, \mathrm{R}^{2}\right)$	12 (X)	13	\%yield ${ }^{\text {b }}$	\%ee ${ }^{\text {c }}$
1	1f (($\left.\left.\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}, \mathrm{OMe}\right)$	12a (CN)	13fa	93	95
2	1f	12b (COMe)	13fb	65	96
3^{d}	1 f	12c ($\mathrm{CO}_{2} \mathrm{Me}$)	13fc	76	95
4	$\mathbf{1 g}(\mathrm{Et}, \mathrm{H})$	12b	13gb	75	97
5	1h (i-Pr, H)	12a	13ha	89	91

${ }^{a}$ Cyclobutanone $\mathbf{1}$ was added dropwise to a THF solution of alkene $\mathbf{1 2}$ (10 equiv) over 1 h in the presence of the rhodium catalyst at $50^{\circ} \mathrm{C}$. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by chiral HPLC. ${ }^{d}$ The reaction was carried out at $60^{\circ} \mathrm{C}$ for 17 h .

Next, the reaction of 3,3-disubstituted cyclobutanone $\mathbf{1 e}$ was examined (Table 1). In contrast to the cases of 3-monosubstituted cyclobutanones $\mathbf{1 a}-\mathbf{d}$, Tol-BINAP proved to operate more selectively than SEGPHOS in constructing the chiral quaternary carbon center (entry 1). Enantiomeric excesses ranging from 92 to 95% were generally observed in the reaction of various 3,3-disubstituted cyclobutanones $\mathbf{1 f}-\mathbf{i}$, except for the case of $\mathbf{1} \mathbf{j}$ having a 3-hydroxypropyl side chain (entries 2-6).

A deuterium-labeling experiment was carried out also with the 3,3-disubstituted cyclobutanone 1f, for which it was impossible to follow the protonolysis pathway shown in Scheme 2 because of the lack of β-hydrogen. In this case, deuterium was incorporated at the 5-position, implying the generation of arylrhodium species 11 via a 1,4-rhodium shift ${ }^{13}$ prior to protonolysis (Scheme 3).

These results led us to examine the competency of intermediary arylrhodium $\mathbf{1 1}$ in a subsequent 1,4 -addition reaction. ${ }^{14}$ When the reaction of $\mathbf{1 f}$ was carried out in the presence of acrylonitrile (12a), the arylrhodium generated in an enantioenriched form via 1,4rhodium shift underwent 1,4 -addition to $\mathbf{1 2 a},{ }^{15}$ and the cascade
product 13fa was obtained in 93% yield with 95% ee (Table 2, entry 1). Other electron-deficient alkenes such as methyl vinyl ketone (12b) and methyl acrylate (12c) could be employed (entries 2 and 3). ${ }^{16}$ Cyclobutanones $\mathbf{1 g}$ and $\mathbf{1 h}$ also underwent the cascade reaction to furnish the corresponding alkylated dihydrocoumarins 13 (entries 4 and 5).

In summary, 3,4-dihydrocoumarins have been synthesized in a highly enantioselective manner through an asymmetric β-carbon elimination step. A new asymmetric cascade reaction consisting of carbonyl addition/ring opening/1,4-addition has been developed by utilization of the intermediary arylrhodium species generated from 3,3-disubstituted cyclobutanones.

Acknowledgment. We thank Takasago International Corporation for its generous gift of (R)-SEGPHOS. This work was supported by Grants-in-Aid for Scientific Research (Nos. 17750087 and 19205013) from MEXT, Japan, and the Asahi Glass Foundation.

Supporting Information Available: Experimental details and selected spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Reviews: (a) Murakami, M.; Ito, Y. Top. Organomet. Chem. 1999, 3, 97. (b) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759. (c) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (d) Kondo, T.; Mitsudo, T. Chem. Lett. 2005, 34, 1462.
(2) Recent examples: (a) Ikeda, S.; Suzuki, K.; Odashima, K. Chem. Commun. 2006, 457. (b) Trost, B. M.; Xie, J. J. Am. Chem. Soc. 2006, 128, 6044. (c) Wender, P. A.; Deschamps, N. M.; Sun, R. Angew. Chem., Int. Ed. 2006, 45, 3957. (d) Shukla, P.; Cheng, C.-H. Org. Lett. 2006, 8, 2867. (e) Tobisu, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2006, 128, 8152. (f) Nakano, M.; Satoh, T.; Miura, M. J. Org. Chem. 2006, 71, 8309. (g) Murakami, M.; Ashida, S. Chem. Commun. 2006, 4599. (h) Yamamoto, Y.; Kuwabara, S.; Hayashi, H.; Nishiyama, H. Adv. Synth. Catal. 2006, 348, 2493. (i) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428. (j) Kondo, T.; Niimi, M.; Nomura, M.; Wada, K.; Mitsudo, T. Tetrahedron Lett. 2007, 48, 2837.
(3) Matsuda, T.; Shigeno, M.; Makino, M.; Murakami, M. Org. Lett. 2006, 8, 3379.
(4) Matsuda, T.; Shigeno, M.; Maruyama, Y.; Murakami, M. Chem. Lett. 2007, 36, 744.
(5) Murakami, M.; Tsuruta, T.; Ito, Y. Angew. Chem., Int. Ed. 2000, 39, 2484.
(6) For a leading example of enantioselective carbon-carbon bond cleavage reaction of cyclobutanolates, see: Matsumura, S.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 8862.
(7) Cyclobutanones $\mathbf{1}$ were prepared from the corresponding salicylaldehyde derivatives. See Supporting Information for details.
(8) For another example of catalytic asymmetric synthesis of $\mathbf{2 a}$, see: Dong, C.; Alper, H. J. Org. Chem. 2004, 69, 5011.
(9) Loiodice, F.; Longo, A.; Bianco, P.; Tortorella, V. Tetrahedron: Asymmetry 1995, 6, 1001.
(10) Because ${ }^{1} \mathrm{H}$ NMR spectra of cyclobutanones $\mathbf{1 d}-\mathbf{j}$ suggested that they equilibrated with their corresponding hemiketals, $\mathbf{4}$ might also be formed from the hemiketals.
(11) (a) Nishimura, T.; Uemura, S. Synlett 2004, 201. (b) Satoh, T.; Miura, M. Top. Organomet. Chem. 2005, 14, 1. (c) Murakami, M.; Makino, M.; Ashida, S.; Matsuda, T. Bull. Chem. Soc. Jpn. 2006, 79, 1315.
(12) For examples of sequential occurrence of β-hydride elimination and subsequent hydrorhodation on a different unsaturated site, see: (a) Yamabe, H.; Mizuno, A.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2005, 127, 3248. (b) Shintani, R.; Okamoto, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 2872. (c) Martinez, R.; Voica, F.; Genet, J.-P.; Darses, S. Org. Lett. 2007, 9, 3213.
(13) For a review, see: Ma, S.; Gu, Z. Angew. Chem., Int. Ed. 2005, 44, 7512.
(14) For an excellent example of 1,4-palladium migration from alkyl to aryl followed by carbon-carbon bond formation, see: Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 7460.
(15) For reviews on rhodium-catalyzed 1,4-addition, see: (a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169. (b) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. For 1,4-addition of organotransition metal species generated in a catalytic way, see: (a) Chang, S.; Na, Y.; Choi, E.; Kim, S. Org. Lett. 2001, 3, 2089. (b) Picquet, M.; Bruneau, C.; Dixneuf, P. H. Tetrahedron 1999, 55, 3937.
(16) Cyclohex-2-enone, benzaldehyde, and oct-4-yne failed to react with the arylrhodium species.

JA075141G

